Foundation of Computer Science — FM2

Assignment 1b - Assignment on Algorithmic Thinking, Part 2 https://www.coursera.org/learn/algorithmic-thinking-2

Module 3: from The sorting problem to Efficiency of binary search and Module 4: from RNA secondary structure problem to Running time of the DP algorithm

1. Illustrate the Mergesort algorithm by sorting the list

Why does Mergesort follow the devide-and-conquer paradigm?

2. Consider the following problem **Sum of Subset (SOS)**:

Given: non-negative integers $m, a_1, a_2, \ldots, a_m, b$ Question: Is there is set $J \subseteq \{1, 2, \ldots, m\}$ such that $\sum_{i \in J} a_i = b$?

(a) Solve the SOS problem with dynamic programming.

Hint: Use a table SUM(i, j) storing the maximal values that can be obtained as a sum of numbers from a_1, a_2, \ldots, a_i such that this sum does not exceed the number j.

(b) Find out what the *knapsack problem* is. How can you modify your algorithm solving SOS in order to solve the knapsack problem?