Perceived Barriers to Open Science among Researchers in Mathematics, Natural Sciences, and Cognitive Sciences

Christian Riedel¹, Shafayet Hossen Chowdhury¹, Ralf Engbert², Ulrike Lucke¹

¹ Department of Computer Science, University of Potsdam, Potsdam, Germany ² Department of Psychology, University of Potsdam, Potsdam, Germany

Open Science

Open science is perceived positively across scientific disciplines

Open Science definition

Open science is defined as an inclusive construct that combines various movements and practices aiming to make multilingual scientific knowledge openly available, accessible and reusable for everyone [...]

UNESCO (2021), <u>https://doi.org/10.54677/MNMH8546</u>

But what does Open Science mean?

Due to a variety of data acquisition, data analysis, and methodologic approaches across the scientific disciplines, there is a diversity of practices and perspectives on open science

Therefore, considerations and sensitivity to the characteristics of the individual research fields and research cultures are crucial to implementing such practices

Structural and Individual Challenges

- Individual challenges (challenges that discourage researchers from adopting open science practices)
 - Additional effort required to prepare and share data
 - Lack of formal training in data and software management and open science practices
 - Concerns over intellectual property and the potential misuse of shared data
 - Research culture (e.g., only share data upon specific requests rather than proactively)
 - Concerns about data and software quality
 - Navigating legal and licensing issues
- Structural Challenges (imposed by specific research cultures and institutional frameworks)
 - Technical hindrances (e.g., interoperability issues)
 - The reliance on closed and proprietary tools
 - Challenges associated with large data volumes
 - Lacking institutional support structures and regulatory frameworks
 - Strategic concerns complicating the willingness of providers (e.g., privacy, security, legal issues)
 - Misaligned career incentives, where the current academic reward system does not sufficiently recognize or reward open science efforts

Banks et al. (2018), <u>https://doi.org/10.1007/s10869-018-9547-8</u>; Beno et al. (2017), <u>https://doi.org/10.29379/jedem.v9i2.465</u>; González-Teruel et al. (2022), <u>https://doi.org/10.3145/epi.2022.may.05</u>; Feger et al. (2020), <u>https://doi.org/10.1145/3415212</u>; Houtkoop et al. (2018), <u>https://doi.org/10.1177/2515245917751886</u>; Pasek & Mayer (2019), <u>https://doi.org/10.29173/istl12</u>

Limitations to Data & Code Sharing

How do researchers from different fields perceive the barriers to open science?

Objectives

+

0

Questionnaire:

- Based on the Gomes et al. barriers, we created a questionnaire to investigate the respective limitations
- Shared in CRC 1294 "Data Assimilation" and intrafaculty unit 'Cognitive Science' at the University of Potsdam

Objectives:

- How do researchers perceive the individual barriers?
- Which discipline-specific characteristics in perceived barriers and data/software use can we investigate?

Questionnaire

General - Questions	
Q1. In my publications, the research teams often use code or data to obtain results.	Yes, No, Not sure
Q2. In my publications, I am often (at least partly) responsible for data generation, code, or software development	. Yes, No, Does not apply
Q3. I conduct research in the following scientific field(s) (multiple selections possible):	Biology, Chemistry, Cognitive Sciences, Computer Science, Didactics, Geosciences, Health Sciences, Linguistics, Mathematics, Nutritional Science, Physics, Psychology, Sports Sciences, Other

Barriers - Questions

1-Strongly disagree, 2-Disagree, 3-Agree, 4-Strongly agree

Sharing Data and Software

Q4-Unclear Value: I do not see a significant benefit in sharing	1 2 3 4 Does not apply
data or code associated with my publications.	1, 2, 5, 4, Does not apply
Q5-Unclear Process: I am still determining where and how to	1 2 3 4 Does not apply
upload my data or code for sharing.	1, 2, 3, 4, Does not apply
Q6-Complex Workflows: My workflows are usually very complex and can not be shared and applied easily	1, 2, 3, 4, Does not apply
O7-Large Files: My datasets are often too large to be shared	1 2 3 4 Does not apply
Q7-Large Files. Wy datasets are often too large to be shared.	1, 2, 5, 4, Does not apply
to improve to be appropriately reused by others	1, 2, 3, 4, Does not apply
Rause Concerns	
O0 Inconversion User The data or and a Learner to actual he	
Q9Inappropriate Use: The data of code I generate could be	1, 2, 3, 4, Does not apply
O10 Primar Concerns The data and de Leonante containe	
Q10-Privacy Concerns: The data or code I generate contains	1, 2, 3, 4, Does not apply
Old S and the Contract The later shared.	
Q11-Sensitive Content: The data of code I generate includes content	1, 2, 3, 4, Does not apply
that may not be in the best interest of science of society when shared.	
Q12-Transient Storage: There need to be more appropriate long-term	1, 2, 3, 4, Does not apply
publication platforms to publish my data or code	
Q13-Sharing Rights: I am concerned that the generated data or code	1, 2, 3, 4, Does not apply
ownership is not in my hands anymore when shared.	-, _, _, .,
Disincentives	
Q14-Scooping: Sharing the data or code limits my ability	1 2 3 4 Does not apply
to generate further publications from the investigation.	1, 2, 5, 4, Does not apply
Q15-Lack of Time: The commitment to preparing and publishing	1 2 3 4 Does not apply
data or code takes too much of my time.	1, 2, 5, 4, Does not apply
Q16-Lack of Incentives: Sharing my data or code does not benefit	1 2 3 4 Does not apply
my academic career.	1, 2, 3, 4, Does not apply

Results – General

Results – Sharing Data and Software

Results – Reuse Concerns

Results – Disincentives

+

0

Training as a Solution for Perceived Barriers (Individual Barriers)

Insecurity, Complex Workflows, Lack of Time

- Training on research data and software management
- Software development with a focus on automation

Scooping, Unclear Value

• Highlight increased citations and collective benefits

Inappropriate Use, Sharing Rights, Privacy

- Training on software documentation and licensing
- Implementing restrictive mechanisms like synthetic datasets or access restrictions for sensitive data

+

0

Field-Specific Needs

Data-intensive fields (e.g., Geosciences, Biology, Linguistics, Physics)

• Focus on strategies for publishing and archiving large datasets

Fields handling sensitive data (e.g., Cognitive Sciences, Psychology, Didactics)

• Focus on anonymization techniques

Research Field	Large Files	Transient Storage	Privacy
Biology	2	4	-
Chemistry	1	2	1
Cognitive Sciences	-	3	4
Computer Science	1	1	-
Didactics	-	-	3
Geosciences	3	5	1
Health Sciences	1	-	2
Linguistics	2	3	1
Mathematics	-	2	2
Nutritional Science	-	-	-
Physics	2	4	1
Psychology	1	2	3
Sports Sciences	1	3	2
Other	-	-	1

Barriers Beyond Training

Certain barriers to sharing research data and software are rooted in cultural and infrastructure frameworks

Infrastructure:

- Fields like Geosciences, Biology, and Physics face challenges with Large Files and Transient Storage
- Solution: Provide access to discipline-specific repositories for publishing and archiving large datasets

Systemic Issues in Academia

- Barriers like 'Lack of Time' and 'Lack of Incentives' critical
- The perceived value, stated in the 'Unclear Value' barrier, is not seen as a major hindrance
- Discrepancy between the perceived value of data/software Mean: sharing and the lack of incentives in academia
- Academic reward structures do not align with the importance of open science practices

+

0

Intermediate Conclusion

Addressing Barriers

- Targeted training can help overcome individual perceived barriers
- Limitations are part of a larger structural context

Need for Support

 \cap

- Establish appropriate training opportunities and IT infrastructure
- Enable policies from funding agencies, journals, and research institutions
- Promote cultural change towards open science

Discipline-Specific Considerations

- Recommendations should be connected to discipline-specific open science demands
- Consider the role of data and software in the research process and associated research culture

Participants selected "Does not Apply" across all questions, which indicates that the definined limitations are irrelevant in some research contexts.

Research Culture: When Barriers Do Not Apply

 A major proportion of participants who found at least one barrier inapplicable were conducting research in Mathematics

With "Does Not Apply" Responses Biology Sports Sciences Chemistry Psychology 5.9% 5.9% Cognitive 5.9% 5.9% Sciences 5.9% Didactics 5.9% Health 5.9%

Research Fields of Participants

52.9%

Resposibility for data

Mathematics

Participants With "Does Not Apply" Responses

5.9%

Sciences

Research teams often use data

Linguistics

Research Culture: When Barriers Do Not Apply

- Research culture characterized by methodologies where open science practices are less dependent on data / software
- Research data and software management is not integral to research activities

Resposibility for data

Research Fields of Participants

Participants With "Does Not Apply" Responses

Research teams often use data

Conclusions

- Researchers recognize the value of Open Science but face significant barriers
- Key Barriers :
 - Knowledge Barriers: Lack of education in data and software management
 - Infrastructure Barriers: Insufficient digital infrastructure for storing and sharing data
 - Cultural Barriers: Lack of incentives and academic rewards for open science practices

Recommendations:

- Education: Enhance training in research data and software management
- Infrastructure Investments: Research institutions must invest in digital infrastructure
- **Recognition Systems**: Revise academic hiring and rewards to prioritize open science
- Research culture: Investigate discipline-specific needs, especially in fields with a strong focus on theoretical research, where open science practices differ from empirical sciences.

 \bigcirc

Transdisciplinary Discussions

Would prioritizing the purpose over the implementation enhance transdisciplinary discussions about Open Science?

О

christian.riedel@uni-potsdam.de

This work was supported by DeutscheForschungsgemeinschaft (DFG) - Project-ID 318763901 - SFB1294, project Z03.

Pixabay.com, CC0