next up previous contents index
Next: Elim Up: Partial Function Type Previous: Formation

Intro

  .
  H,r:ind(z,x¯.T;a) >> Gagggggggby ind r over A 
 ¯[EXT foobar]¯[EXT foobar] H >>  in  A>  B 				by intro at 

>> A> B in

f: A> B , x:A >> b in

f: A> B , x:A, b >> b in B

  .
  H,r:ind(z,x¯.T;a) >> Gagggggggby ind r over A 
 ¯[EXT foobar]¯[EXT foobar] H >>  =  in  A>  B 				by intro at 

>> in A> B

>> in A> B

>> {x:A | dom()(x)} = {x:A | dom()(x)} in

x:{x:A | dom()(x)} >> [x] = [x] in B

  .
  H,r:ind(z,x¯.T;a) >> Gagggggggby ind r over A 
 ¯[EXT foobar]¯[EXT foobar] H >> g[a] in B 				by intro using  A>  B

>> g in A> B

>> a in {x:A | dom(g)(x)}

  .
  H,r:ind(z,x¯.T;a) >> Gagggggggby ind r over A 
 ¯[EXT foobar]¯[EXT foobar] H >> dom(g) in A->
 				by intro using  A>  B

>> g in A> B

>> A> B in



Richard Eaton
Thu Sep 14 08:45:18 EDT 1995