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Abstract

We propose Large Neighborhood Prioritized Search (LNPS)
for solving combinatorial optimization problems in Answer
Set Programming (ASP). LNPS is a metaheuristic that starts
with an initial solution and then iteratively tries to find bet-
ter solutions by alternately destroying and prioritized search-
ing for a current solution. Due to the variability of neighbor-
hoods, LNPS allows for flexible search without strongly de-
pending on the destroy operators. We present an implemen-
tation of LNPS based on ASP. The resulting heulingo solver
demonstrates that LNPS can significantly enhance the solving
performance of ASP for optimization. Furthermore, we es-
tablish the competitiveness of our LNPS approach by empir-
ically contrasting it to (adaptive) large neighborhood search.

1 Introduction

Systematic search and Stochastic Local Search (SLS) are
two major methods for solving a wide range of combina-
torial optimization problems. Each method has strengths
and weaknesses. Systematic search can prove the optimal-
ity of solutions, but in general, it does not scale to large in-
stances. SLS can find near-optimal solutions within a rea-
sonable amount of time, but it cannot guarantee the opti-
mality of solutions. Therefore, there has been an increasing
interest in the development of hybrids between systematic
search and SLS (Hoos and Stützle 2015).

Large Neighborhood Search (LNS) (Shaw 1998;
Pisinger and Ropke 2019) is one of the most studied
hybrids. LNS is an SLS-based metaheuristic that starts
with an initial solution and then iteratively tries to
find better solutions by alternately destroying and re-
pairing a current solution. Since the repair operators
can be implemented with systematic solvers, the LNS
heuristic has been shown to be highly compatible with
mixed integer programming (Fischetti and Lodi 2003;
Danna, Rothberg, and Pape 2005) and constraint program-
ming (Shaw 1998; Dekker et al. 2018; Björdal et al. 2019;
Björdal et al. 2020).

Answer Set Programming (ASP) (Lifschitz 2019) is a
declarative programming paradigm for knowledge repre-
sentation and reasoning. Due to remarkable improvements
in the efficiency of ASP solvers, ASP has been success-

fully applied in diverse areas of artificial intelligence and
computer science, such as robotics, computational biology,
product configuration, decision support, scheduling, plan-
ning, constraint satisfaction, model checking, timetabling,
and many others (Erdem, Gelfond, and Leone 2016;
Alviano, Dodaro, and Maratea 2018;
Ali, El-Kholany, and Gebser 2023; Banbara et al. 2013;
Banbara et al. 2019).

The use of LNS with ASP has been recently ex-
plored (Eiter et al. 2022b), and soon afterward extended
to Adaptive Large Neighborhood Search (Adaptive LNS)
(Eiter et al. 2022a). The ALASPO solver, an ASP-based im-
plementation of adaptive LNS, has demonstrated that LNS
can boost the solving performance of ASP on hard optimiza-
tion problems (Eiter et al. 2022a). However, LNS strongly
depends on the destroy operators since the undestroyed part
is fixed. In general, it cannot guarantee the optimality of
solutions. It is therefore still particularly challenging to de-
velop a universal algorithm for ASP which has the advan-
tages of both systematic search and SLS.

In this paper, we propose Large Neighborhood Prioritized
Search (LNPS) for solving combinatorial optimization prob-
lems in ASP. LNPS is a metaheuristic that starts with an ini-
tial solution and then iteratively tries to find better solutions
by alternately destroying and prioritized searching for a cur-
rent solution. We present the design and implementation of
LNPS based on ASP. To evaluate the effectiveness of our ap-
proach, we conduct experiments on a benchmark set used in
(Eiter et al. 2022a).

The main contributions and results of our paper are sum-
marized as follows:

1. We propose Large Neighborhood Prioritized Search
(LNPS). Since the undestroyed part is not fixed and can
be prioritized (i.e., variability), the LNPS heuristic allows
for flexible search without strongly depending on the de-
stroy operators. Moreover, LNPS guarantees the optimal-
ity of solutions.

2. We present a design and implementation of LNPS based
on ASP. In our approach, the LNPS algorithm can be
compactly implemented by using multi-shot ASP solving
and heuristic-driven ASP solving, in our case via clingo’s
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Python API (Gebser et al. 2019; Kaminski et al. 2023)
and heuristic statements (Gebser et al. 2013).

3. The resulting heulingo solver is a tool for heuristically-
driven answer set optimization. heulingo can handle any
ASP encodings for optimization without any modifica-
tion. All we have to do is to add an LNPS configuration in
a declarative way. heulingo also supports the traditional
LNS heuristic.

4. Our empirical analysis considers a challenging bench-
mark set used in (Eiter et al. 2022a). We succeeded in sig-
nificantly enhancing the solving performance of clingo for
optimization. Furthermore, heulingo demonstrated that
the LNPS approach allows us to compete with ASP-based
adaptive LNS (Eiter et al. 2022a).

Overall, the proposed LNPS can represent a significant con-
tribution to the state-of-the-art of ASP solving for optimiza-
tion as well as hybrids between systematic search and SLS.

2 Background

In this paper, ASP programs are written in the language of
clingo (Gebser et al. 2015). ASP programs are finite sets of
rules. Rules are of the form

a0 :- a1,. . .,am,not am+1,. . .,not an.

Each ai is a propositional atom. An atom a and its negation
not a are called literal. The left of :- is a head, and the
right is a body. The connectives :-, ‘,’, and not represent
if, conjunction, and default negation, respectively. A period
‘.’ terminates each rule. Intuitively, the rule means that a0

must be assigned to true if a1, . . . , am are true and am+1,
. . . , an are false. A rule whose body is empty (i.e., a0.)
is called fact. Facts are always true. A rule whose head is
empty is called integrity constraint:

:- a1,. . .,am,not am+1,. . .,not an.

An integrity constraint represents that the conjunction of
literals in the body must be false. Semantically, an ASP
program induces a collection of answer sets. Answer sets
are distinguished models of the program based on stable
model semantics (Gelfond and Lifschitz 1988). ASP has
some convenient language constructs for modeling combi-
natorial (optimization) problems. A conditional literal is
of the form ℓ0:ℓ1,. . .,ℓm. Each ℓi is a literal, and ℓ1,
. . .,ℓm is called condition like in mathematical set nota-
tion. A cardinality constraint of the form {c1;. . .;cn}
= k represents that exactly k conditional literals among
{c1,. . . ,cn} must be satisfied. A weak constraint of the
form :∼ L.[w,t] represents preferences in ASP, which
is equivalent to #minimize {w,t:L}. Here, w is a
weight, and t and L are tuples of terms and literals, respec-
tively.

Multi-shot ASP solving introduces new language con-
structs: #program and #external statements. The
former statement of the form #program p(t). is used
to separate an ASP program into several parameterizable
subprograms. The predicate p is a subprogram name and
the optional parameter t is a symbolic constant. base

Listing 1: A traditional ASP encoding for TSP solving

1 { cycle(X,Y) : edge(X,Y); cycle(X,Y) :

edge(Y,X) } = 1 :- vtx(X).

2 { cycle(X,Y) : edge(X,Y); cycle(X,Y) :

edge(Y,X) } = 1 :- vtx(Y).

3 reached(1).

4 reached(Y) :- reached(X), cycle(X,Y).

5 :- vtx(X), not reached(X).

6 :∼ cycle(X,Y), edgewt(X,Y,C). [C,X,Y]

Listing 2: clingo program activating or deactivating heuristic state-
ments on demand for TSP solving

1 #program heu.

2 #heuristic cycle(X,Y): heu(cycle(X,Y),W,

M). [W,M]

3
4 #script(python)

5 from clingo import Number, Function

6 def main(ctl):

7 ctl.ground([("base",[])])

8 ctl.solve()

9 a = Function("heu",[Function("cycle

",[Number(1),Number(2)]),Number(1),

Function("true")])

10 ctl.add("ext",[],f"#external {a}.")

11 ctl.ground([("ext",[])])

12 ctl.ground([("heu",[])])

13 ctl.assign_external(a,True)

14 ctl.solve()

15 ctl.release_external(a)

16 ctl.solve()

17 #end.

is a default subprogram with an empty parameter and in-
cludes rules that are not subject to any #program state-
ments. The latter statement of the form #external a.
represents that the atom a is an external atom whose truth
value can be changed later on. By default, the initial
truth value of external atoms is false. Heuristic-driven
ASP solving allows for customizing the search heuristics
of clingo from within ASP programs. Heuristic informa-
tion is represented by #heuristic statements of the form
#heuristic a:L.[w,m] where m and w are terms
representing a heuristic modifier and its value, respectively.

clingo provides a Python API for controlling ASP’s
grounding and solving process. For illustration, let
us consider the well-known Traveling Salesperson Prob-
lem (TSP). A traditional ASP encoding for TSP solving
(Eiter et al. 2022b) is shown in Listing 1. The atom cycle

(X,Y) represents that a directed edge X→ Y is in a Hamil-
tonian cycle. That is, it characterizes a solution. A clingo
program activating or deactivating heuristic statements on
demand for TSP solving is shown in Listing 2. This program
consists of a subprogram heu and an embedded Python
script.

Once clingo accepts the program (Listing 2) combined



Algorithm 1 Large Neighborhood Prioritized Search

Input: a feasible solution x
1: x∗ ← x
2: while stop criterion is not met do
3: xt ← prioritized-search(destroy(x))
4: if accept(xt, x) then
5: x← xt

6: end if
7: if c(xt) < c(x∗) then
8: x∗ ← xt

9: end if
10: end while
11: return x∗

with a TSP instance of fact format and ASP encoding (List-
ing 1), a clingo object is created and bound to variable ctl
(cf. Line 6). The instance and the encoding of Listing 1 are
grounded by the ground function in Line 7. The solve
function in Line 8 triggers computing stable models (i.e.,

solutions of TSP) for the ground program. That is, the first
call of solve performs a plain TSP solving with clingo.

Next, the external statement of heu(cycle(1,2),1,
true) is added to the subprogram ext by the add func-
tion in Line 10. This external atom is used to activate
or deactivate the heuristic statement in Line 2. The ex-
ternal and heuristic statements are grounded in Lines 11
and 12, respectively. Since the truth value of the external
atom is set to true by the assign_external function
in Line 13, #heuristic cycle(1,2). [1,true] is
activated in the second call of solve in Line 14. Intuitively,
this heuristic statement means that the atom cycle(1,2)

is set to true with higher priority during the search. More
precisely, the solver decides first on cycle(1,2) of level
1 (0 by default for each atom) with a positive sign. Fi-
nally, the heuristic statement is deactivated in the third call of
solve in Line 16, since the truth value of the external atom
is permanently set to false by the release_external

function in Line 15.

3 Large Neighborhood Prioritized Search

We consider that the Combinatorial Optimization Problem
(COP) is a minimization problem. The task of COP is to
find a solution x∗ such that c(x∗) ≤ c(x) ∀x ∈ X , where X
is the finite set of feasible solutions, and c : X → R is an
objective function that maps from a solution to its cost.

We propose an SLS-based metaheuristic called Large
Neighborhood Prioritized Search (LNPS) for solving COPs.
LNPS starts with an initial solution and then iteratively tries
to find better solutions by alternately destroying a current so-
lution and reconstructing it with prioritized search. We de-
fine the prioritized search as a systematic search for which
its branching heuristic can be configured (or customized) to
meet the specific needs of users based on the priority of as-
signments to each variable.

The algorithm of LNPS is shown in Algorithm 1. Three
variables are used in the algorithm. The variable x∗ is the
best solution obtained during the search. The variable x is

the current solution. The variable xt is a temporal solution
which can be accepted as the current solution or discarded.
The destroy operator randomly destroys parts of x and re-
turns the undestroyed part. The prioritized-search opera-
tor returns a feasible solution, which is reconstructed from
the undestroyed part by prioritized search.

The best solution x∗ is initialized in Line 1. The loop in
Lines 2–10 is repeated until a stop criterion is met. Typical
choices for the stop criterion would include the optimality of
x∗, a time-limit, or a limit on the number of iterations. The
destroy and prioritized-search operators in Line 3 are al-
ternately applied to find a new solution xt. The new solution
is evaluated in Line 4 whether or not it becomes the new cur-
rent solution. In Line 5, the current solution x is updated if
necessary. There are several ways to implement the accept
function. The simplest way is to accept a strictly better so-
lution than the current solution. And also, the new solution
is checked in Line 7 whether or not it is better than the best
known solution. In Line 8, the current best solution x∗ is
updated if necessary. Finally, the best solution is returned.

We discuss the main features of LNPS compared with tra-
ditional LNS. In the following figure, each outer rectangle
represents a current solution, in which the dotted part repre-
sents the destroyed part.

LNS

destroyed

fixed

LNPS

destroyed

not fixed (varying)

In LNS (Pisinger and Ropke 2019), the destroy operator,
particularly the percentage of destruction, plays an essen-
tial role since the undestroyed part is fixed. The percentage
of destruction should be sufficiently large such that a neigh-
borhood includes better solutions, and be sufficiently small
such that the solver finds one of them. In addition, LNS
cannot guarantee the optimality of solutions in general.

In contrast, LNPS can provide flexible search with weak-
ened dependency on the destroy operators since the unde-
stroyed part is not fixed (varying) and can be prioritized.
Due to this variability, the percentage of destruction can be
smaller in LNPS. LNPS can guarantee the optimality of ob-
tained solutions by appropriately designing a stop criterion
of prioritized search. The easiest way is gradually increasing
the time-limit or the solve-limit on conflicts or restarts.

Furthermore, the undestroyed part can be configured (or
customized) based on the priority of each variable. That
is, LNPS allows for easy incorporation of domain-specific
heuristics or domain-independent ones into the undestroyed
part. For example, the most simple heuristic would be to
keep an initial solution as much as possible. This can be
achieved by setting the percentage of destruction to zero
and giving high priority to full assignments of decision
variables. Such a heuristic with zero destruction can be
useful for quick re-scheduling in real-world applications
(e.g., timetabling) rather than minimal perturbation with
respect to an initial solution (Sakkout and Wallace 2000;
Phillips et al. 2017; Zivan, Grubshtein, and Meisels 2011).
Note that the zero destruction is completely useless for LNS



since it turns out to be the same solution.

4 heulingo: an ASP-based LNPS
We develop the heulingo solver which is an LNPS imple-
mentation based on ASP. The architecture of heulingo is
shown in Figure 1. The heulingo solver accepts a COP in-
stance and an LNPS configuration in ASP fact format. In
turn, these facts are combined with an ASP encoding for
COP solving, which are afterward solved by the LNPS algo-
rithm powered by ASP solvers, in our case clingo. ASP facts
of LNPS configurations specify the behavior of the LNPS
heuristic, especially for the destroy and prioritized-search
operators.

Implementation. The pseudo-code of our LNPS algo-
rithm using clingo’s multi-shot ASP solving is shown in Al-
gorithm 2. The key idea is utilizing the #heuristic state-
ment to implement the prioritized-search operator of LNPS.
The input consists of a problem instance, an ASP encoding,
and an LNPS configuration. The variables sol, sol best, and
sol tmp correspond to x, x∗, and xt respectively in Algo-
rithm 1. The variables cost, cost best, and cost tmp repre-
sent the objective values c(x), c(x∗), and c(xt) respectively.
The variable ctl is a solver object of the Control class in
clingo’s Python API. The variable ret is used to store the
solving result.

First, in Line 1, the instance and the encoding in the base
subprogram are grounded. The solve function in Line 2

triggers searching for an initial solution with a certain stop
criterion, and then the current solution and its cost are ini-
tialized. The algorithm returns the current solution in Line
4 and terminates if it is optimal. Otherwise, the global best
solution and its cost are initialized in Line 6.

The LNPS configuration (see below for details) is
grounded and parsed in Lines 7–15. The heuristic statements
of the form #heuristic p(X1, . . . , Xn):heuristic(
p(X1, . . . , Xn),W,M,t), W!=inf. [W,M] are added
to the heuristic subprogram in Line 16. The external
atom heuristic(p(X1, . . . , Xn),W,M,t) in the body
is used to activate or deactivate the heuristic statements on
demand. We refer to it as heuristic atom. In addition, two
kinds of integrity constraints in Line 14 are added in a simi-
lar way to support traditional LNS.

Next, the loop in Lines 21–48 is repeated until a stop cri-
terion is met. The variable finished, initialized to False in
Line 17, is a flag for whether iterations should be finished or
not. The check variability function in Line 20 checks the
variability of the LNPS configuration. That is, the variable
variability is set to False if the undestroyed part may be
fixed for LNS, otherwise True.

In each iteration, the algorithm invokes the destroy func-
tion in Line 23 to destroy parts of the current solution, ac-
cording to the configuration. In turn, the prioritize func-
tion in Line 24 is invoked to generate new heuristic atoms
for the undestroyed part. The heuristic statements in the
previous iteration are deactivated in Line 25. The external
statements for new heuristic atoms are generated and added
to the external subprogram in Lines 27–30.

We are now ready to try to find a better feasible solu-
tion. The external and heuristic statements are grounded in

Lines 31 and 32, respectively. The heuristic statements are
activated in Lines 33–35 by setting the truth value of their
heuristic atoms to true. The solve function in Line 37 trig-
gers heuristically searching for a new solution, and then the
temporal solution and its cost are updated. Note that the
stop criterion of solve in Lines 2 and 37 can be separately
specified using clingo’s options: the time-limit in seconds
(--time-limit) or the solve-limit on conflicts or restarts
(--solve-limit). We adopt the latter solve-limit in the
current implementation of heulingo.

In Line 38, the termination criterion is checked. The vari-
able finished is set to True in Line 39 if the new solution is
optimal and the variability flag is True. When the variabil-
ity flag is False (i.e., LNS), the algorithm cannot terminate
even if the new solution is optimal since the undestroyed part
is fixed. The new solution is evaluated in Line 41 whether
it can become the current solution or should be rejected.
heulingo accepts only improving solution by default, but
the acceptance criterion can be customized by a heulingo’s
option. And also, the new solution is checked in Line 44
whether or not it is better than the best known solution. In
Line 45, the current best solution is updated if necessary. At
the end of the loop in Line 47, the value of clingo’s solve-
limit is increased by the function increase solve limit to
guarantee the optimality of solutions. Finally, the algorithm
returns the best solution in Line 49.

ASP fact format of LNPS configurations. We intro-
duce three different kinds of predicates to specify config-
urations of the LNPS heuristic in the config subprogram.
The predicate _lnps_project/2 is used to define what
subset of the atoms belonging to an answer set is subject to
LNPS. We refer to the atoms via _lnps_project/2 as
projected atoms. In general, the projected atoms character-
ize a solution. The predicate _lnps_destroy/4 is used
to define what part of the projected atoms is destroyed and
by what percentage. The predicate _lnps_prioritize
/4 is used to define how the projected atoms in the unde-
stroyed part are prioritized (or fixed).

For illustration, let us consider a configuration of the
LNPS heuristic for the TSP encoding in Listing 1. For this,
the random destruction would be one of the most simple
configurations, which is shown in Listing 3. Intuitively,
the configuration represents a heuristic that randomly
destroys a current solution, and the undestroyed part is
not fixed but is kept as much as possible in each iteration.
The atom _lnps_project(cycle,2) characterizes
a solution as the atoms of cycle/2 belonging to an
answer set. The atom _lnps_destroy(cycle,2,3,

p(n)) means that the destroy function in Line 23 of
Algorithm 2 randomly destroys n% of the projected atoms
of cycle/2. Note that the third argument 3=(11)2
represents that all possible two arguments (X,Y) such that
cycle(X,Y) holds are subject to destruction. The atom
_lnps_prioritize(cycle,2,1,true) means that
a statement #heuristic cycle(X,Y): heuristic

(cycle(X,Y),W,M,t), W != inf. [W,M] is
added to the heuristic subprogram in Line 16 of
Algorithm 2. The traditional LNS heuristic of fixing the
undestroyed part can be done by replacing a fact in Line 4



Algorithm 2 LNPS algorithm with clingo’s multi-shot ASP solving and heuristic statements

Input: P : problem instance, E: ASP encoding, C: LNPS configuration
1: ctl.ground([(“base”, [])]) {grounding P ∪ E}
2: (ret, sol, cost)← ctl.solve()
3: if ret = OPTIMUM FOUND then
4: return sol
5: end if
6: sol best, cost best← sol, cost
7: ctl.ground([(“config”, [])]) {grounding C}
8: lnps config ← get lnps config()
9: rules← “”

10: for c in lnps config do
11: p← c.get predicate name()
12: n← c.get arity()
13: atom← “p(X1,X2, . . .,Xn)”
14: rules← rules+ “:- not atom, heuristic(atom,inf,true,t).”

+“:- atom, heuristic(atom,inf,false,t).”
+“#heuristic atom : heuristic(atom,W,M,t), W!=inf. [W,M]”

15: end for
16: ctl.add(“heuristic”, [“t”], rules)
17: finished← False
18: step← 0
19: prev heu atoms← []
20: variability← check variability(lnps config)
21: while finished = False do
22: step← step+ 1
23: undestroyed← destroy(sol, lnps config)
24: heu atoms← prioritize(undestroyed, lnps config, step)
25: ctl.release external(prev heu atoms)
26: statements← “”
27: for heuristic(a, w,m, t) in heu atoms do
28: statements← statements+ “#external heuristic(a, w,m, t).”
29: end for
30: ctl.add(“external”, [], statements)
31: ctl.ground([(“external”, [])])
32: ctl.ground([(“heuristic”, [step])])
33: for heuristic(a, w,m, t) in heu atoms do
34: ctl.assign external(heuristic(a, w,m, t), True)
35: end for
36: prev heu atoms← heu atoms
37: (ret, sol tmp, cost tmp)← ctl.solve()
38: if ret = OPTIMUM FOUND and variability = True then
39: finished← True
40: end if
41: if accept(cost tmp, cost) = True then
42: sol, cost← sol tmp, cost tmp
43: end if
44: if cost tmp < cost best then
45: sol best, cost best← sol tmp, cost tmp
46: end if
47: increase solve limit()
48: end while
49: return sol best
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Figure 1: The architecture of heulingo

Listing 3: A simple LNPS heuristic for TSP solving

1 #program config.

2 _lnps_project(cycle,2).

3 _lnps_destroy(cycle,2,3,p(n)).

4 _lnps_prioritize(cycle,2,1,true).

of Listing 3 with _lnps_prioritize(cycle,2,inf
,true).

The main features of heulingo. The heulingo solver can
be considered as a tool for heuristically-driven answer set
optimization. In addition to the variability and optimality
from LNPS, heulingo has the following features.

• Expressiveness: heulingo relies on ASP’s expressive lan-
guage that is well suited for modeling combinatorial opti-
mization problems.

• Implementation: The LNPS algorithm can be compactly
implemented using clingo’s multi-shot ASP solving and
heuristic statements, as can be seen in Algorithm 2.

• Domain heuristics: heulingo allows for easy incorpora-
tion of domain heuristics in a declarative way, such as
the random destruction in Listing 3. More sophisticated
domain-specific heuristics can also be incorporated.

• Usability and Compatibility: heulingo can deal with any
ASP encoding for optimization without any modifica-
tion. All we have to do is to add an LNPS configuration.
heulingo also supports the traditional LNS heuristic.

For efficiency, the question is whether the heulingo approach
matches the performance of the (adaptive) LNS heuristic.
We empirically address this question in the next section.

5 Experiments

To evaluate our approach, we carry out experiments on
a challenging benchmark set and ASP encodings used in
(Eiter et al. 2022a). The benchmark set consists of Traveling
Salesperson Problem (TSP), Social Golfer Problem (SGP),
Sudoku Puzzle Generation (SPG), Weighted Strategic Com-
panies (WSC), and Shift Design (SD). The ASP encodings
include an encoding for TSP solving in Listing 1.

We compare heulingo (LNPS) and heulingo (LNS) with
clingo and ALASPO. Here, heulingo (X) indicates that
heulingo uses heuristic X .

• We run clingo-5.6.2 1 with the default configuration un-
less otherwise noted.

1https://potassco.org/clingo/

• We execute heulingo in 3 runs for each instance using the
random destruction with different percentages.

• We execute ALASPO 2 in 3 runs for each instance with the
best portfolio 3 presented in (Eiter et al. 2022a).

ALASPO is an ASP-based implementation of adaptive LNS.
ALASPO selects in each iteration a potentially more effec-
tive destroy operator from a pre-defined portfolio. The port-
folio consists of a selection strategy, multiple destroy oper-
ators, and their percentages of destruction. ALASPO imple-
ments three selection strategies: self-adaptive roulette-wheel
strategy, uniform roulette-wheel strategy, and dynamic strat-
egy. ALASPO provides two destroy operators: random-
atoms and random-constants. The random-atoms operator
is the same as the random destruction as explained in Sec-
tion 4. The random-constants operator randomly selects a
sample from all constants of the atoms via #show statements,
and destroys all atoms containing any selected constants.

We use Python 3.9.18 to run heulingo and ALASPO. We
run TSP, SGP, and SPG on Mac OS Apple M1 Ultra (20-core
CPU and 128GB memory), WSC on Mac OS Intel Xeon
W (12-core CPU and 96GB memory), and SD on Mac OS
Apple M1 (8-core CPU and 16GB memory).

Traveling salesperson problem is a well-known opti-
mization problem. The task is to find a Hamiltonian cy-
cle of minimum accumulated edge costs. The time-limit is
300s for each instance. The solve-limit of heulingo is set
to 1,210,000 and 800,000 conflicts for finding an initial so-
lution and each iteration, respectively. We use three differ-
ent percentages of the random destruction: {1%, 3%, 5%}
for heulingo (LNPS) and {28%, 30%, 32%} for heulingo
(LNS).

Comparison results of obtained bounds are shown in Ta-
ble 1. The column shows in order the instance names, the
obtained bounds of clingo, and the average, minimum, and
maximum of obtained bounds in 3 runs of heulingo (LNS),
heulingo (LNPS), and ALASPO. The best average in each
row is highlighted in bold. The bottom shows the average
rates to the bounds obtained by clingo. heulingo (LNPS)
is able to find the best bounds on average for all 20 in-
stances. heulingo (LNPS) succeeds in improving the bounds
of clingo by 35.1% on average.

Social golfer problem is a combinatorial optimization
problem whose goal is to schedule g groups of p players
for w weeks such that no two golfers play together more
than once. We consider instances with g = 8, p = 4, and

2http://www.kr.tuwien.ac.at/research/projects/bai/kr22.zip
3We use dynamic.json for TSP and SPG, roulette alpha0.4.json

for SGP, roulette alpha0.8.json for WSC, and uniform.json for SD.

https://potassco.org/clingo/
http://www.kr.tuwien.ac.at/research/projects/bai/kr22.zip


Instance clingo
heulingo (LNS) heulingo (LNPS) ALASPO

avg. min. max. avg. min. max. avg. min. max.

dom rand 70 300 1155482584 3 591 438.7 427 454 386.3 383 390 424.3 397 444
rand 70 300 1155482584 0 552 371.7 351 393 326.3 320 333 367.7 349 384

rand 70 300 1155482584 11 606 447.0 436 454 386.3 381 392 447.0 433 466
rand 70 300 1155482584 12 540 386.3 364 406 344.7 341 349 380.7 371 386
rand 70 300 1155482584 14 567 393.7 388 404 357.7 355 359 397.0 382 409
rand 70 300 1155482584 3 575 444.7 428 458 408.7 398 419 450.0 445 459
rand 70 300 1155482584 4 649 476.7 464 483 423.0 419 428 475.7 470 479
rand 70 300 1155482584 5 601 420.0 397 449 367.3 361 374 396.3 393 401
rand 70 300 1155482584 7 604 435.0 429 446 406.3 405 407 442.0 428 462
rand 70 300 1155482584 8 553 441.7 426 461 387.0 385 389 427.0 412 441
rand 70 300 1155482584 9 546 414.3 391 427 368.3 365 372 403.3 402 405
rand 80 340 1159656267 0 714 464.7 446 492 410.7 410 411 479.0 476 484

rand 80 340 1159656267 10 654 494.0 480 503 441.3 438 445 499.7 495 507
rand 80 340 1159656267 11 731 528.7 509 539 464.0 458 475 520.7 497 534
rand 80 340 1159656267 13 686 467.7 437 487 431.3 426 440 471.3 466 477
rand 80 340 1159656267 15 720 492.7 484 499 439.3 435 446 478.0 471 488
rand 80 340 1159656267 16 667 546.7 525 559 496.3 492 499 558.7 551 571
rand 80 340 1159656267 17 737 501.3 492 509 449.0 443 457 472.3 461 479
rand 80 340 1159656267 18 674 484.7 466 510 418.7 417 420 488.0 477 506
rand 80 340 1159656267 4 590 471.7 442 511 418.3 413 421 462.3 460 466

Average rate 1.000 0.728 0.649 0.721

Table 1: Comparison results on traveling salesperson problem

#weeks (w) clingo
heulingo (LNS) heulingo (LNPS) ALASPO

avg. min. max. avg. min. max. avg. min. max.

8 3 2.0 2 2 1.7 1 2 2.0 2 2
9 7 4.3 4 5 4.7 4 5 5.0 5 5

10 10 7.0 7 7 7.7 7 8 7.7 7 8
11 11 10.0 10 10 9.7 9 10 10.3 10 11
12 15 13.0 13 13 13.0 13 13 13.7 13 14

Average rate 1.00000 0.75134 0.75132 0.80013

Table 2: Comparison results on social golfer problem

8 ≤ w ≤ 12. The time-limit is 1,800s for each w. The
solve-limit of heulingo is set to 500,000 conflicts for finding
an initial solution and each iteration. We use three different
percentages of the random destruction: {55%, 60%, 65%}
for heulingo (LNPS) and {60%, 65%, 70%} for heulingo
(LNS). In addition, we use heulingo’s option to limit the de-
terioration of objective values during the search. More pre-
cisely, this option enforces that every time a current solution
and its cost are updated, the cost minus one is set to the ini-
tial bound for the objective function in the next iteration.

Comparison results of obtained bounds are shown in Ta-
ble 2. heulingo is able to find the best bounds on aver-
age for all 8 ≤ w ≤ 12. heulingo (LNPS) provides the
same or better bounds on minimum for all w than heulingo
(LNS). heulingo (LNPS) succeeds in improving the bounds
of clingo by 24.868% on average. heulingo performs
slightly better on average than ALASPO.

Sudoku puzzle generation is an optimization prob-

lem whose goal is to find an N × N sudoku puz-
zle with a minimal number of hints. We consider two
sizes of N = 9 and N = 16. A disjunctive
ASP encoding (Eiter et al. 2022b) we used takes advantage
of a saturation technique (Eiter and Gottlob 1995). The
time-limit is 600s for each size N . We use clingo’s
options --configuration=many and -t4 as with
(Eiter et al. 2022a) for all solvers. The solve-limit of
heulingo is set to 300,000 and 6,000 conflicts for find-
ing an initial solution and each iteration, respectively. We
use three different percentages of the random destruction:
{12%, 14%, 16%} for heulingo (LNPS) and {18%, 20%,
22%} for heulingo (LNS).

Comparison results of the obtained number of hints are
shown in Table 3. heulingo (LNPS) is able to find the best
bounds on average for both of the two sizes. heulingo
(LNPS) succeeds in improving the bounds of clingo by 34%
on average. heulingo provides a near-optimal solution of 19



Size clingo
heulingo (LNS) heulingo (LNPS) ALASPO

avg. min. max. avg. min. max. avg. min. max.

9× 9 21 20.0 19 21 19.3 19 20 20.0 20 20
16× 16 232 95.3 93 98 93.0 90 95 96.7 95 99

Average rate 1.000 0.682 0.660 0.685

Table 3: Comparison results on sudoku puzzle generation

Instance clingo
heulingo (LNS) heulingo (LNPS) ALASPO

avg. min. max. avg. min. max. avg. min. max.

wstratcomp 001 198988 194247.3 192783 195411 195288.3 194517 196179 204601.7 200494 208733
wstratcomp 006 81819 80058.0 79390 80392 78144.3 77420 78928 75128.7 74544 75654
wstratcomp 015 163906 160918.0 160718 161288 161968.3 161828 162150 198342.3 190565 212559
wstratcomp 018 129784 135377.3 135204 135724 131159.0 128835 133126 118672.7 114983 121040
wstratcomp 019 94978 96533.0 96533 96533 96194.7 95518 96533 91169.7 90602 91664
wstratcomp 030 182200 180349.7 179806 181285 179982.0 179535 180563 210109.7 208706 212666
wstratcomp 033 193568 196136.3 195765 196330 194886.3 193875 196009 220024.3 218604 222432
wstratcomp 042 133273 134648.0 134164 135235 130933.0 129125 132450 117355.3 115786 119145
wstratcomp 050 166498 166067.0 165159 166859 166249.0 165667 167011 190745.3 188446 193819
wstratcomp 051 69582 60815.7 60196 61432 59637.0 58882 60077 63122.0 62015 64043
wstratcomp 052 70868 62591.3 62508 62677 62044.3 61927 62188 63597.7 63370 63948
wstratcomp 053 72848 63239.0 62312 63749 63175.0 63082 63276 64441.7 64136 64955
wstratcomp 054 75352 63511.0 62482 64091 62294.7 62082 62492 63903.7 61825 66365
wstratcomp 055 77469 67033.7 66686 67277 66889.3 66823 67020 68190.7 67616 69190
wstratcomp 056 68919 61420.0 60967 62309 61161.0 60798 61616 66436.3 65371 67025
wstratcomp 057 67836 63465.7 63259 63806 62630.7 62519 62762 66218.3 66013 66570
wstratcomp 058 73174 63477.0 62912 64583 61092.7 61003 61256 65160.0 64094 66142
wstratcomp 059 71986 62733.0 62641 62828 61061.3 60615 61664 62271.0 61454 62885
wstratcomp 060 75302 66103.0 65476 66649 64355.0 64289 64399 68726.3 68383 69398
wstratcomp 061 70918 63846.7 63640 64116 63805.3 63561 64084 65452.7 65173 65842

Average rate 1.000 0.934 0.923 0.965

Table 4: Comparison results on weighted strategic companies

hints for N = 9, compared with the known minimal hint of
17.

Weighted strategic companies (Eiter et al. 2022b) is an
optimization variant of the ΣP

2 -hard strategic companies
problem (Cadoli, Eiter, and Gottlob 1997). The task is to
find strategic sets such that the sum of weights of strate-
gic companies is minimized. The time-limit is 3,600s for
each instance. We use clingo’s option --opt-strategy
=usc,15 for finding an initial solution in heulingo and

ALASPO. 4 The solve-limit of heulingo is set to 30,000,000
and 60,000 conflicts for finding an initial solution and each
iteration respectively on the first 9 instances in Table 4, and
to 1,000,000 and 40,000 conflicts on the next 11 instances.
We use three different percentages of the random destruc-
tion: {4%, 7%, 10%} for heulingo (LNPS) and {16%, 19%,
22%} for heulingo (LNS).

Comparison results of obtained bounds are shown in Ta-
ble 4. heulingo (LNPS) is able to find the best bounds on
average for 12 instances, compared with 1 of clingo, 3 of

4We use this option because it provides better bounds than the
default configuration in our preliminary experiments.

heulingo (LNS), and 4 of ALASPO. Although clingo per-
forms well on WSC, heulingo (LNPS) succeeds in improv-
ing the bounds of clingo by 7.7% on average. heulingo per-
forms slightly better on average than ALASPO.

Shift design is an employee scheduling problem. The
task is to find staff schedules considering the minimiza-
tion of the number of shifts and both over- and under-
staffing. The ASP encoding (Abseher et al. 2016) we used
is based on lexicographic optimization of three objective
functions. The time-limit is 3,600s for each instance. We
use clingo’s options --configuration=handy and --
opt-strategy=usc,3 as with (Eiter et al. 2022a) for
all solvers. The solve-limit of heulingo is set to 900,000
and 40,000 conflicts for finding an initial solution and each
iteration, respectively. We use three different percentages
of the random destruction: {10%, 20%, 30%} for heulingo
(LNPS) and {25%, 35%, 45%} for heulingo (LNS). We use
heulingo’s option to limit the deterioration of objective val-
ues during the search, as with SGP.

Comparison results of obtained bounds are shown in Ta-
ble 5. heulingo (LNS) is able to find the best bounds for 5



Instance clingo
heulingo (LNS) heulingo (LNPS) ALASPO

min. max. min. max. min. max.

4 30m (0, 427, 50) (0, 310, 19) (0, 311, 22) (0, 353, 45) (0, 375, 44) (0, 310, 14) (0, 310, 18)
6 15m (0, 266, 46) (0, 175, 20) (0, 176, 24) (0, 187, 33) (0, 202, 35) (0, 176, 31) (0, 189, 38)
11 30m (0, 821, 66) (0, 643, 46) (0, 694, 61) (0, 709, 63) (0, 719, 64) (0, 645, 61) (0, 685, 60)
20 30m (0, 1035, 60) (0, 900, 49) (0, 951, 62) (0, 944, 65) (0, 952, 64) (0, 906, 55) (0, 926, 58)
26 30m (0, 1062, 78) (0, 771, 41) (0, 771, 48) (0, 991, 78) (0, 1004, 82) (0, 784, 68) (0, 898, 78)
27 60m (0, 393, 25) (0, 362, 16) (0, 362, 18) (0, 387, 26) (0, 393, 25) (0, 362, 15) (0, 362, 17)
29 30m (0, 528, 59) (0, 447, 38) (0, 450, 45) (0, 459, 57) (0, 460, 59) (0, 447, 42) (0, 451, 48)
2 30m (0, 456, 52) (0, 388, 22) (0, 388, 28) (0, 394, 45) (0, 398, 54) (0, 388, 14) (0, 388, 16)

Table 5: Comparison results on shift design

among 8 instances. Although heulingo (LNPS) can find bet-
ter bounds for all instances than clingo, it does not match the
performance of heulingo (LNS) and ALASPO.

Summary and discussion. heulingo (LNPS) was able to
find the best bounds on average for 37 among all 55 in-
stances (67% in a total). heulingo (LNPS) succeeded in im-
proving the bounds of clingo by 35.1% for TSP, 24.8% for
SGP, 34.0% for SPG, and 7.7% for WSC. On the other hand,
however, heulingo (LNPS) met the difficulty of decreasing
the bounds sufficiently on shift design. To resolve this issue,
by our results, it would be effective to extend heulingo for
adaptive LNPS combining the LNS and LNPS heuristics.

In general, it can be a hard and time-consuming task to
find the best configuration for LNPS. The configurations of
heulingo were obtained in our preliminary experiments. We
tested, for each benchmark problem, some percentages of
destruction less than the ones used in (Eiter et al. 2022b),
taking the variability of LNPS into account. And then, we
selected the best one and two values below and above it.

We observed that clingo quickly falls into saturated solu-
tions for many instances, in the sense that it has the difficulty
of decreasing the bounds sufficiently. Thus, we roughly es-
timated the number of conflicts on which clingo is stuck at
saturated solutions, and then used it for the solve-limit of
heulingo. We plan to extend the functionality of clingo’s
API to measure whether or not clingo gets stuck during the
search, and it will be helpful to develop not only adaptive
LNPS but also other metaheuristics in ASP.

6 Related Work

New techniques for optimization in ASP have
been continually developed, such as core-
guided optimization (Alviano and Dodaro 2019;
Alviano and Dodaro 2017; Andres et al. 2012)
and complex preference handling (Brewka 2004;
Brewka et al. 2015; Gebser, Kaminski, and Schaub 2011).
Multi-shot ASP solving (Gebser et al. 2019;
Kaminski et al. 2023) and heuristic-driven ASP
solving (Dodaro et al. 2016; Gebser et al. 2013;
Gebser, Ryabokon, and Schenner 2015) can be quite
useful for implementing widely different SLS-based
metaheuristics in ASP.

Besides work on LNS in ASP (Eiter et al. 2022b;
Eiter et al. 2022a), LNS has been used in combi-

nation with MaxSAT (Demirovic and Musliu 2017),
mixed integer programming (Fischetti and Lodi 2003;
Danna, Rothberg, and Pape 2005), and constraint program-
ming (Shaw 1998; Dekker et al. 2018; Björdal et al. 2019;
Björdal et al. 2020). The use of SLS for SAT, considering
variable dependencies (Kautz and Selman 2007), was
studied in (Belov, Järvisalo, and Stachniak 2011).

On the traditional LNS heuristic, starting
with (Shaw 1998), a great deal of research has been
done (Pisinger and Ropke 2019). LNS and its extensions
have been so far successfully applied in the areas of routing
and scheduling problems, including vehicle routing prob-
lems (Shaw 1998), pickup and delivery problem with time
windows (Ropke and Pisinger 2006), cumulative job shop
scheduling problem (Godard, Laborie, and Nuijten 2005),
and technician and task scheduling prob-
lem (Cordeau et al. 2010).

More recently, multi-agent path find-
ing (Li et al. 2021; Phan et al. 2024),
timetabling (Kiefer, Hartl, and Schnell 2017;
Demirovic and Musliu 2017), and test laboratory schedul-
ing (Geibinger, Mischek, and Musliu 2021) are well
explored. By our results, it would be interesting to explore
whether the variability feature of LNPS could be effective
for these problems.

7 Conclusion

We proposed Large Neighborhood Prioritized Search
(LNPS) for solving combinatorial optimization prob-
lems. We presented an implementation design of LNPS
based on Answer Set Programming (ASP). The result-
ing heulingo solver is a tool for heuristically-driven
answer set optimization. All source code including
heulingo and benchmark problems is available from
https://github.com/banbaralab/kr2024.

The LNPS heuristic can be further extended to adap-
tive LNPS in which a potentially more effective combina-
tion of destruction and prioritization is selected in each it-
eration. The heulingo approach can be applied to a wide
range of optimization problems. In particular, ASP-based
LNPS for timetabling can be promising since ASP has been
shown to be highly effective for curriculum-based course
timetabling (Banbara et al. 2013; Banbara et al. 2019). For
this, in our preliminary experiments, heulingo succeeded in

https://github.com/banbaralab/kr2024


finding improved bounds for 8 instances in the most difficult
UD5 formulation, compared with the best known bounds ob-
tained by more dedicated metaheuristics. From a broader
perspective, integrating LNPS into MaxSAT and PB opti-
mization would be interesting. We will investigate these
possibilities, and our results will be applied to solving real-
world applications.
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