next up previous contents index
Next: Elim Up: Inductive Type Proof Previous: Formation

Intro

  .
  H,r:ind(z,x¯.T;a) >> Gagggggggby ind r over A 
 ¯[EXT foobar]¯[EXT foobar] H >>  rec(z,x.T;a)  				by intro at 
		

>> \ x.rec(z,x.T;x)

>> rec(z,x.T;a) in

  .
  H,r:ind(z,x¯.T;a) >> Gagggggggby ind r over A 
 ¯[EXT foobar]¯[EXT foobar] H >> r in  rec(z,x.T;a)  				 by intro at 

>> r in \ x.rec(z,x.T;x)

>> rec(z,x.T;a) in

  .
  H,r:ind(z,x¯.T;a) >> Gagggggggby ind r over A 
 ¯[EXT foobar]¯[EXT foobar] H >> rec_ind(p; h,.g) in 

by intro over using y:A# rec(z,x.T;y) new

:(y:A#Z(y))->( in y:A# rec(z,x.T;y)),

h::(y:A#Z(y))->G,

:y:A#( ) >> g in

>> p in y:A# rec(z,x.T;y)



Richard Eaton
Thu Sep 14 08:45:18 EDT 1995