next up previous contents index
Next: Computation Up: Inductive Type Proof Previous: Intro

Elim

  .
  H,r:ind(z,x¯.T;a) >> Gagggggggby ind r over A 
 ¯[EXT foobar]¯[EXT foobar] H,r: rec(z,x.T;a) , >> G 				 by elim r		

H,r: \ x.rec(z,x.T;x) , >> G

  .
  H,r:ind(z,x¯.T;a) >> Gagggggggby ind r over A 
 ¯[EXT foobar]¯[EXT foobar] H,r: rec(z,x.T;a)  >> G<a,r>p
				rec_ind(<a,r>;)

by elim r over y:A# rec(z,x.T;y)\ using p. new

p:(y:A#Z(y))->(p in y:A# rec(z,x.T;y)),

h:p:(y:A#Z(y))->G,

p:y:A#( ) >> G

>> a in A



Richard Eaton
Thu Sep 14 08:45:18 EDT 1995