next up previous contents index
Next: Introduction Rules Up: Appendix B: Converting Previous: Appendix B: Converting

Differences in the Logic

The Nuprl proof rules naturally extend the Lambda--prl proof rules and as such are organized along roughly the same lines. However, the logic of Nuprl is considerably more powerful than that of Lambda--prl , and the rules are correspondingly more complex. The Nuprl rules are classified into three broad categories: introduction, elimination and equality; the equality rules are further broken down into computation rules and equality rules for each of the term constructors. The introduction and elimination rules are analogous to those in Lambda--prl ; the equality rules are a new feature of the Nuprl logic.

The differences between the logic of Lambda--prl and Nuprl can be briefly summarized as follows:

We now discuss the effect of these aspects of the Nuprl logic on the formulation of the rules.





next up previous contents index
Next: Introduction Rules Up: Appendix B: Converting Previous: Appendix B: Converting



Richard Eaton
Thu Sep 14 08:45:18 EDT 1995